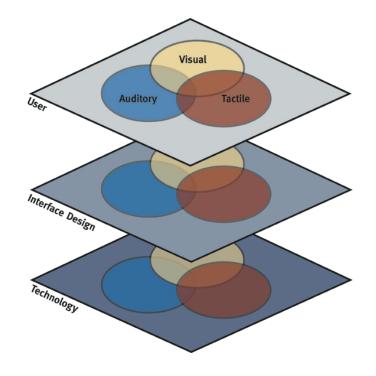


Quality and Usability Lab, TU Berlin

Sebastian Möller

Professor, Quality and Usability Lab, TU Berlin, Germany Adjunct Professor, University of Canberra, Australia



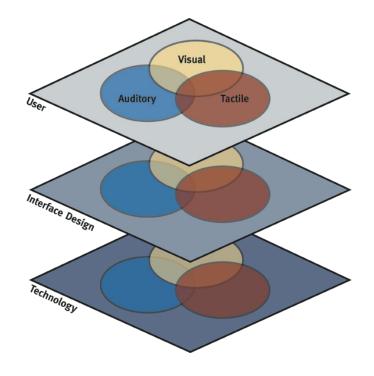
@ TU BERLIN

Goal: Explore future technology and human perception to design quality interactions.

Approach:

Comprehensive usability design requires taking viewpoints on three layers.

- User: Measuring and modelling usability and perceptual quality
- Interface design:
 Designing the communication interface between user and system
- Technology:
 Multimedia analysis,
 synthesis and
 compression



TOPICS

Quality: Perception, judgment and prediction of auditory, visual and tactile signals

Audio and Augmented Reality: Audio, acoustics, and auditory and visual augmented reality

Speech: Speech processing, voice perception, and spoken human-computer interaction

User Experience: Measuring and optimizing the usability of human interfaces

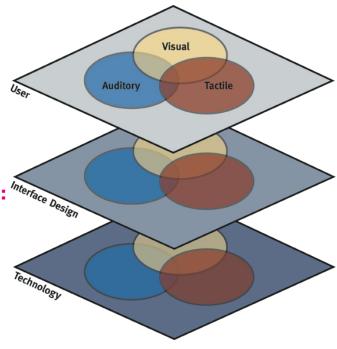
Next Generation
Crowdsourcing: Mobile,
real-time, secure and
confidential crowdsourcing
on our Crowdee platform

Usable Security & Privacy:

Determining and modelling user factors in security and privacy

TEAM

Quality:


- Jan-Niklas Antons
- Gabriel Mittag
- Falk Schiffner
- Steven Schmidt
- Stefan Uhrig
- Saman Zadtootaghaj

Audio and Augmented Reality: Interface Design

Tanja Kojic

Speech:

- Laura Fernandez Gallardo
- Prof. Michael Wagner
- Benjamin Weiss

User Experience:

- Patrick Fhrenbrink
- Stefan Hillmann
- Thilo Michael
- Carola Trahms

Next Generation Crowdsourcing:

- Neslihan Büyükdemircioglu
- Babak Naderi
- Tim Polzehl
- Rikhu Prasad Surya
- Rafael Zequira

Usable Security & Privacy:

Maija Poikela

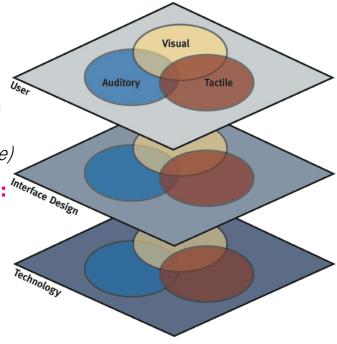
MAJOR PROJECTS

Quality:

Gaming QoE (DFG)

 Dimension-based Speech Quality (DFG)

 Simulation of Conversation Behavior (DFG)


QoE-Net (H2020 Marie-Curie)

Audio and Augmented Reality: Interface Design

360 Degree (Exist)

Speech:

 Speaker Personality and Likability (DFG)

User Experience:

- Social Psychological Aspects of Smart Homes (SoftwareCampus)
- PflegeTab (GKV)
- Mieles (Erasmus+)
- Fix-IT (BMBF)

Next Generation Crowdsourcing:

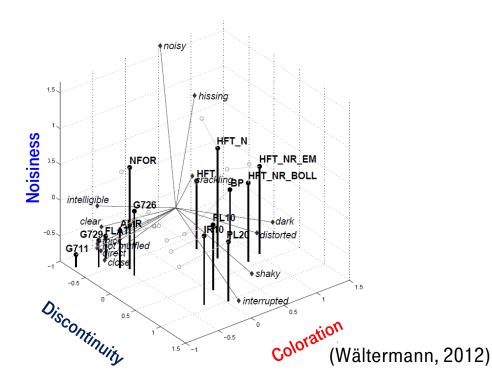
- OurPuppet (BMBF)
- ICU (BMBF)
- ALMeS (EIT)
- ERICS (EIT)
- Crowdee (Exist)

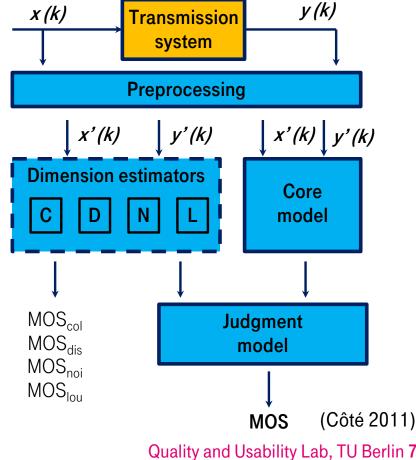
Usable Security & Privacy:

PROJECT EXAMPLE: QUALITY QOE-NET AND GAMING QUALITY

Quality of Gaming Experience (Gaming QoE):

- Identification of influence factors
- Impact of technical characteristics on QoE
- Measurement of Player Experience (ITU Rec.)
- Development of prediction models
- Gamification




PROJECT EXAMPLE: QUALITY

DIMENSION-BASED SPEECH QUALITY

QoE prediction: perceptual dimensions

DIAL model, candidate for future P.AMD standard

PROJECT EXAMPLE: QUALITY PREDICTING TTS QUALITY

QoE prediction: application to TTS quality

•	DIMENSIONS	RELEVANT SCALES	Kraft1995	Mayo2005	Vis2005	Seget2007	Mayo2011	SD/F	FA	ST/MDS	_				
	NATURALNESS OF VOICE	naturalness voice pleasantness	Prosody		Naturalness	Naturalness and		Natural	Inacc	Naturalness of Voice					
	Prosodic Quality	stress rhythm prosody intonation	riosody	Prosodic Cues		Prosody	Unit Appropriatness and Prosody	Ivattual	iliess						
	FLUENCY AND INTELLIGIBILITY	fluency intelligibility bumpiness polyphony	Segmental	Segmental or Unit Level Cues	Intelligibility	Intelligibility	Overall Join Quality/Quantity Join Distribution	Tempo Distorti		Temporal Distortions			(Hinter	eitne	r, 2017)
	Absence of Disturbances	hissing noise rasping				DATABASE	GENI	DER N	Modei	$\frac{1}{R}$ NC	OV RMSE	\overline{R}	$\frac{PQ}{RMSE}$	\overline{R}	AI RMSE
	DISTURBANCES	disturbances				SD/FA,	FEMA	1 1	SVR RPM	.43 .85	$0.90 \\ 0.49$.58 .85	$0.76 \\ 0.54$.14 .77	0.63 0.39
	CALMNESS	CALMNESS speed tension				ST/MDS, Seget2007	Mai	Б	SVR RPM	.62 .90	0.73 0.44	.56 .82	0.73 0.43	.31	0.77 0.34

PROJECT EXAMPLE: QUALITY CONVERSATIONAL SPEECH QUALITY

Simulation of human conversation behavior:

- Uses a stack-based goal-oriented dialogue manager
- Agents "talk" based on dialogue acts and turntaking signals
- Networks adds degradations to the messages (delay, packet loss, ...)
- Agents react to increased double-talk and mutual silence due to delay
- Agents try to correct misunderstandings due to packet loss and other degradations

Dialogue-act annotation
Turn-taking annotation

Stack-based goal-oriented
Dialogue Manager

Simulated Interlocutor

Dialogue act annotation

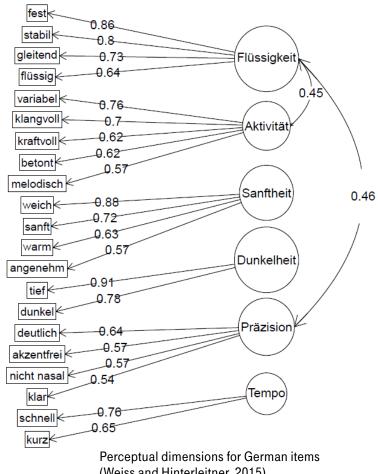
Turn-taking annotation

Degradation information

Simulated Interlocutor

The system will give us an estimation of the perceived quality based on the simulation

PROJECT EXAMPLE: SPEECH SPEAKER CHARACTERISTICS


Dimension analysis:

- 6 dimensions for voice descriptions
- 5 dimensions for interpersonal descriptions
 - Attractiveness, confidence, apathy, serenity, incompetence

	attract.	confid.	apathy	seren.	incomp.
Extrav.	-0.02	0.37	-0.42	-0.21	0.05
Agreea.	0.53*	-0.55*	-0.29	-0.26	-0.35
Consci.	0.52*	0.18	-0.87***	-0.29	-0.74**
Neurot.	-0.32	-0.70**	-0.03	-0.62*	0.31
Open.	0.53*	-0.13	-0.94***	-0.53*	-0.60*

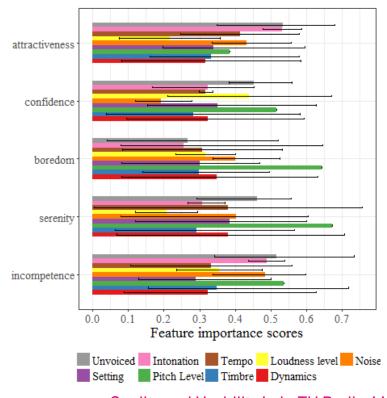
p < .05; p < .01; p < .001

Correlation between interpersonal descriptions and Big 5 (Fernandez Gallardo and Weiss, 2017).

(Weiss and Hinterleitner, 2015).

Quality and Usability Lab, TU Berlin 10

PROJECT EXAMPLE: SPEECH SPEAKER CHARACTERISTICS


Prediction of voice description dimensions:

- Good acoustic models for
 - Darkness, Activity, Softness, Tempo
- Other dimensions are more difficult:
 - Precision, Fluency (Weiss, 2016)

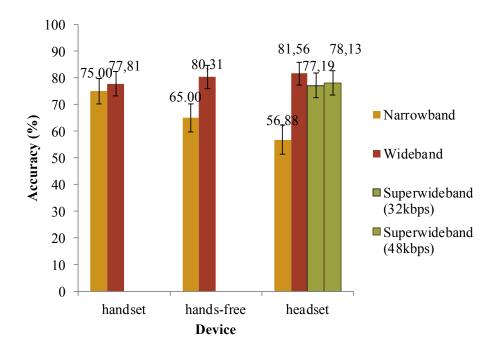
Prediction of interpersonal description dimensions:

- Intonation features for attractiveness and incompetence
- Pitch level for confidence, apathy and serenity
- Ongoing work modelling these dimensions

Acoustic modelling of interpersonal characteristics (Fernandez Gallardo and Weiss, 2017).

PROJECT EXAMPLE: SPEECH SPEAKER IDENTITY

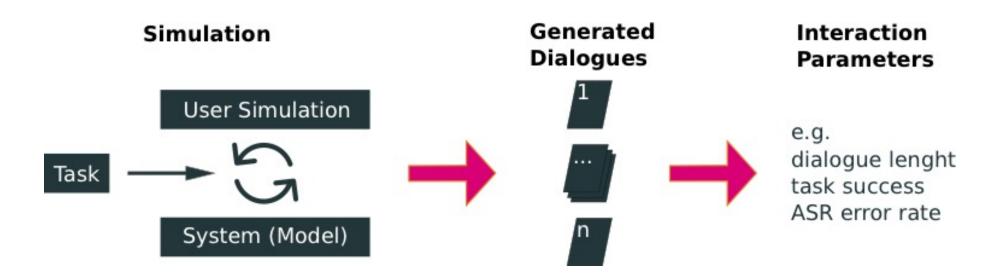
Effect of transmission channels


- Human speaker recognition: WB greatly improves over NB
 - yet SWB offers no additional benefit
- Automatic speaker recognition: significant improvement in WB and in SWB with respect to NB

	EER (%)			
Distortion	Males	Females		
Clean 4 kHz	2.36	4.21		
G.711at 64	2.95	4.68		
AMR-NB at 12.2	3.82	6.63		
GSM-EFR at 12.2	4.23	6.11		
Speex NB at 24.6	3.17	6.42		
Clean 8 kHz	1.36	1.55		
G.722at 64	1.23	1.64		
AMR-WB at 12.65	1.82	2.35		
Speex WB at 42.2	1.23	1.92		
Clean 16 kHz	1.17	1.05		
G.722.1C at 48	1.14	1.10		

EER based on GMM-UBM experiments (Fernandez Gallardo, 2015).

Relative EER reduction NB to WB: 42.4% males 63.2% females


Relative EER reduction WB to SWB: 14.0% males 32.3% females Human speaker recognition performance with user interfaces in receiving direction (Fernandez Gallardo et al., 2013).

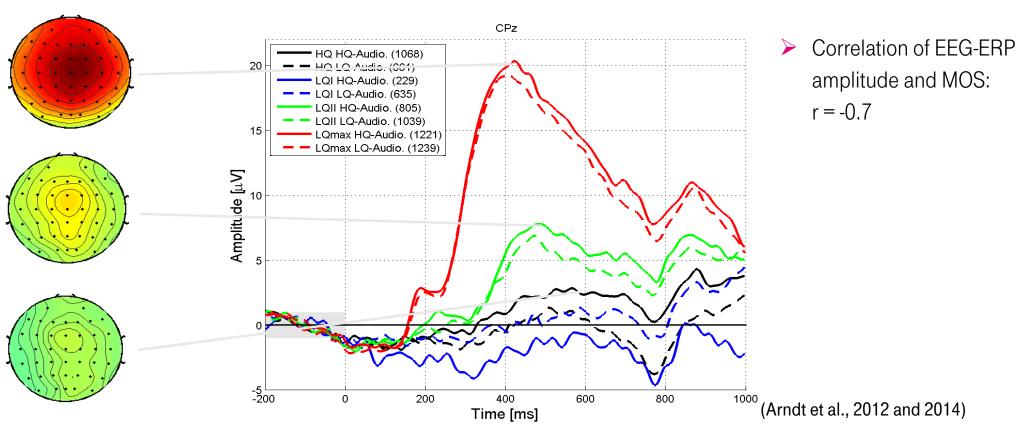
PROJECT EXAMPLE: USER EXPERIENCE INTERACTIVE SPEECH SERVICES


User behavior simulation: Principle

INTERACTIVE SPEECH SERVICES

Formalization of interactions:

- Identification of interaction patterns
- See Hillmann (2016, 2017*)*in print

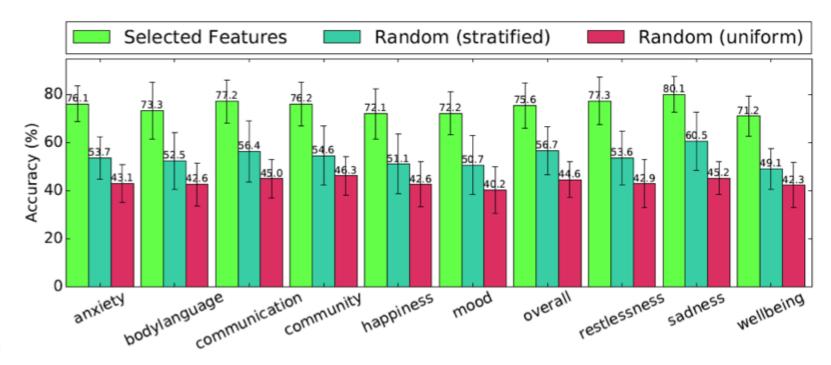


PHYSIOLOGY-BASED EXPERIENCE MEASUREMENT

EXPERIENCE STIMULATION

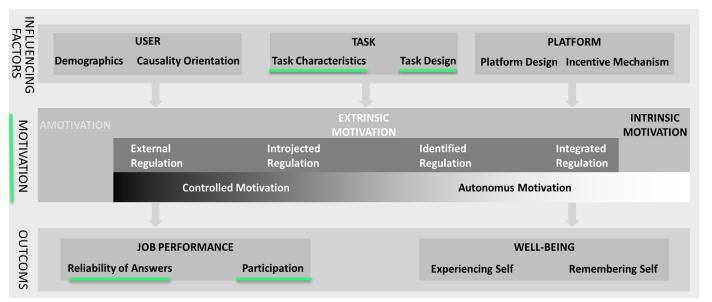
PflegeTab: Adaptive Software for Cognitive Training

- Activation of care recipients with age related diseases (dementia) using games
- Adaptation based on individual data, matching capabilities (physical and mental state) to demand
- Communication ensuring trust of all involved parties (care takers and recipients, families)
- Integration in family life (shared photos, video telephony)



EXPERIENCE STIMULATION

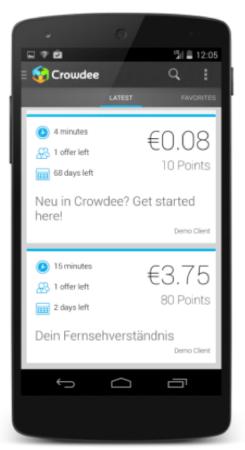
PflegeTab: Prediction of user states



PROJECT EXAMPLE: CROWDSOURCING

MOTIVATION

- Crowdsourcing Work Motivation Scale (CWMS): Based on self-determination theory, measuring both type and amount of motivation
- Task **Acceptance** can be predicted by its characteristics with 88.36% accuracy:
 - Interestingness,
 - Frequency,
 - Ratio of reward to workload
- Workload can be predicted from
 Task Design (adjusted-R² = 0.61)



PROJECT EXAMPLE: CROWDSOURCING PLATFORM

Crowdee: (incl. Crowdee GmbH spin-off from TU Berlin)

- Microjob platform working on mobile and fixed computers
- Mobile workforce-on-demand: Dynamics, Opportunities and Threats by Humans-as-a-Service including Privacy and Security for Corporate/Personal data
- Research tool for investigating
 - motivation for crowd workers
 - crowdsourcing platform optimization
 - future communication and online labor markets.
 - data quality analysis
 - quality assessment via crowdsourcing

